

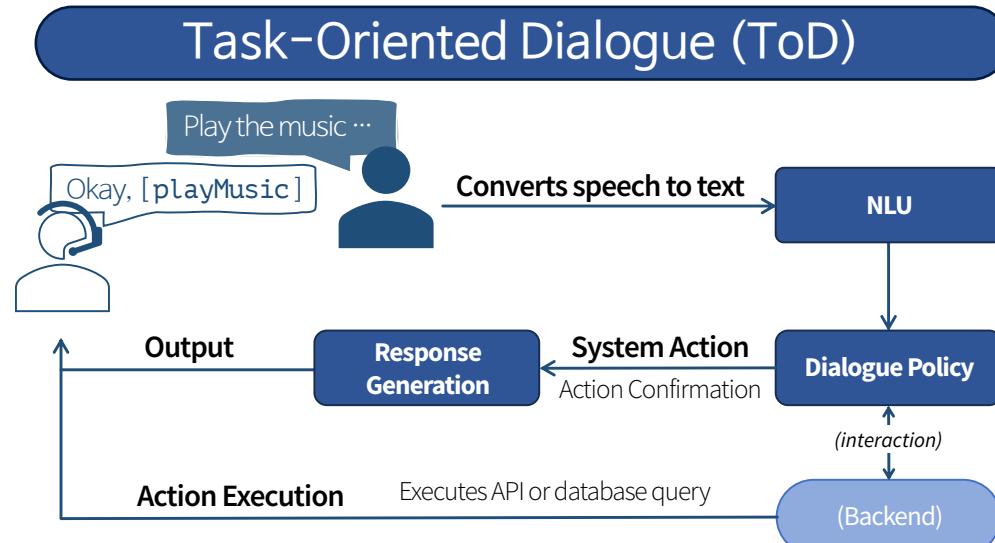
EMNLP2025 Main Conference | Long paper | Session 2 : Poster A



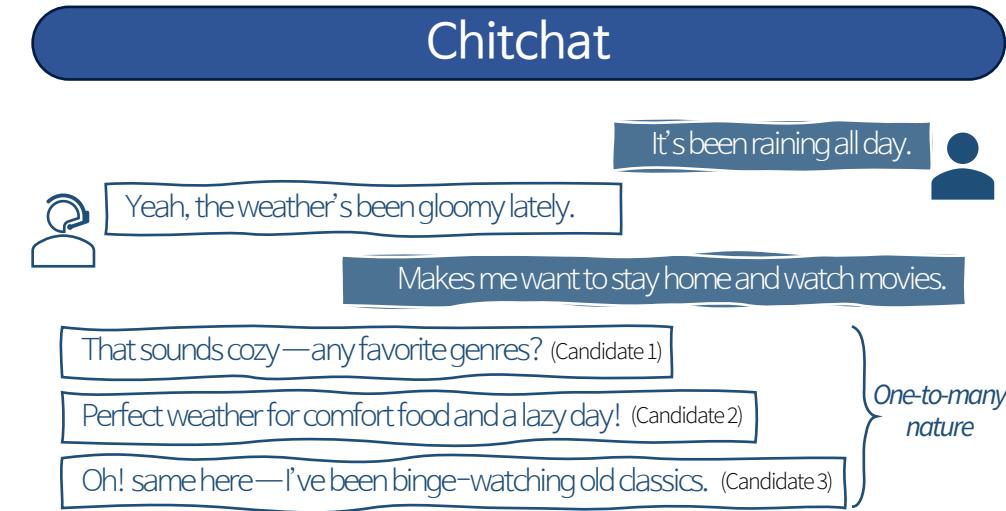
# **Beyond Task-Oriented and Chitchat Dialogues: Proactive and Transition-Aware Conversational Agents**

---

Yejin Yoon    Yuri Son    Namyeong So    Minseo Kim  
Minsoo Cho    Chanhee Park    Seungshin Lee    Taeuk Kim


Hanyang University, Hyundai Motor Company | Republic of Korea

Presented by Yejin Yoon


# Motivation

## ToD vs. Chitchat → need for an integrated system

Real conversations blend both **ToD** and **Chitchat** naturally, yet current systems remain mode-bound and reactive.

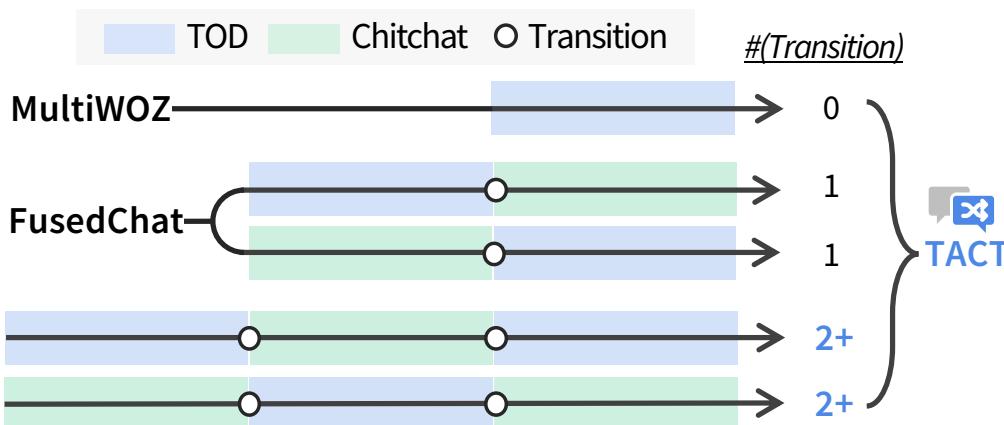


- *Goal-driven* ; having exact goals
- *Structured* ; finite space of input and output state
- *Task-driven* ; finishing a dialogue as soon as possible



- *Open-ended* ; No exact goal
- *Flexible* ; infinite space of input and output state
- *Engaging* ; Sustaining a dialogue as long as possible




**Our Goal** : enable agents to understand and manage transitions between modes

# Motivation

## Benchmark Gap

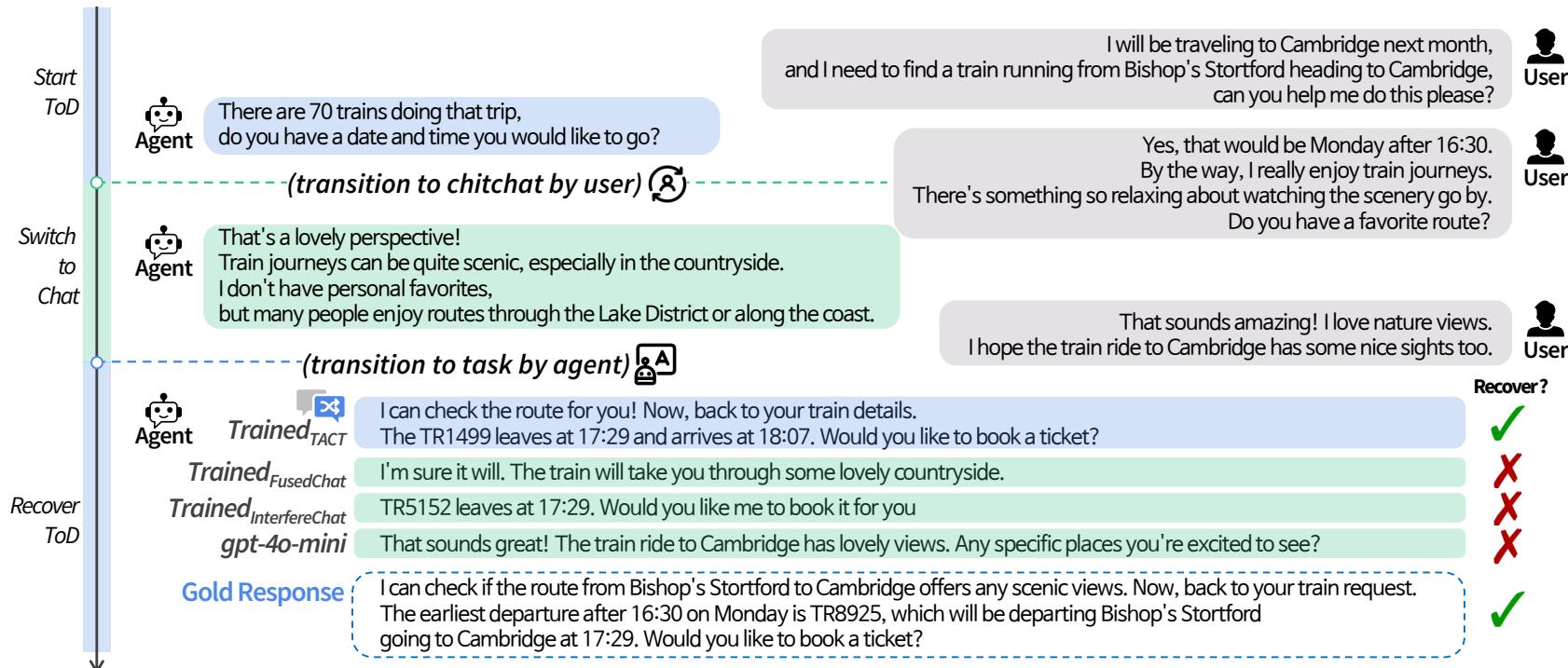
- MultiWOZ** ToD only → no mode transition
- FusedChat** only one switch (ToD ↔ Chitchat) → limited dynamics
- InterfereChat** insert a single Chitchat turn into ToD → forced immediate return, no recoverable transitions
- TACT** supports multiple transitions (2+) and recoverable flows  
; 12 distinct flow types, balanced initiators (user/agent)

### [ Flow diversity ]



### [ Dataset comparison ]

| Dataset       | SalesBot2.0 | FusedChat   | InterfereChat | TACT                  |       |
|---------------|-------------|-------------|---------------|-----------------------|-------|
| Seed          | SalesBot1.0 | MultiWOZ2.4 | FusedChat     | MultiWOZ2.2           | SLURP |
| # Intents     | 6           | 11          | 11            | 11                    | 50*   |
| # Dialog      | 5,453       | 10,436      | 4,475         | 7,199                 | 9,936 |
| # Avg. Turn   | 7.71        | 18.36       | 13.58         | 15.04                 | 16.42 |
| # Avg. Switch | 0.96        | 1           | 0*            | 1.93                  | 2.06  |
| # Avg. Recov. | -           | 0           | 0*            | 0.93                  | 1.07  |
| # Uniq. Flow  | 2           | 2           | 1             | 11                    | 12    |
| Flow Types    | CT          | TC, CT      | T*            | TCT, CTC, TCTCT, etc. |       |




Existing datasets can't train agents to **return to task or handle complex flows**

# Motivation

## Our Goal : From reactive responders → From reactive responders to proactive flow managers

- Baseline agents (trained on other datasets or **GPT-4o-mini**) fail to recover once the dialogue digresses
-  **TACT** enables transition-aware and proactive behavior across ToD–Chitchat flows.



 **TACT** bridges the gap between **structured** goal completion and **open-ended** human dialogue

# TACT Construction

Design : Generate diverse and realistic mode transitions simulating user - agent dynamics

## TCT Flow

**Task → Chat → Task**

Recovering from off-topic turns

- 1) Extract long ToD segment ( $\geq 4$  turns)
- 2) Insert short chitchat block mid-task
- 3) Mimics user diversion and agent recovery

STEP 1.

*MultiWOZ2.2*



Select a long TOD (at least 4-turn)

SLURP



1. Expand 1-turn utterance into a short TOD (about 3-turn)
2. Extend the short TOD into a longer one according to the designed intent flow.

STEP 2.



Interrupt a TOD with a short chitchat

Enables richer **flow diversity** and **smoother context continuity** across dialogue modes

# TACT Construction

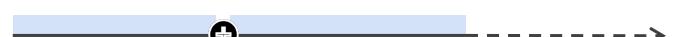
Design : Generate diverse and realistic mode transitions simulating user - agent dynamics

## TCT Flow

### Task → Chat → Task

Recovering from off-topic turns

- 1) Extract long ToD segment ( $\geq 4$  turns)
- 2) Insert short chitchat block mid-task
- 3) Mimics user diversion and agent recovery


#### STEP 1.

MultiWOZ2.2



Select a long TOD (at least 4-turn)

SLURP



1. Expand 1-turn utterance into a short TOD (about 3-turn)  
2. Extend the short TOD into a longer one according to the designed intent flow.

#### STEP 2.



Interrupt a TOD with a short chitchat

## CTC Flow

### Chat → Task → Chat

Light conversation before and after the task

- 1) Start with short ToD (2-3 turns)
- 2) Add light conversation before and after
- 3) Simulates casual small-talk wrapping a brief task

#### STEP 1.

MultiWOZ2.2



Select a short TOD (fewer than 4-turn)

SLURP



Expand 1-turn utterance into a short TOD (about 3-turn)

#### STEP 2.



Attach short chitchat before and after a short TOD



Enables richer **flow diversity** and **smoother context continuity** across dialogue modes

# Dataset Validation

**What we validate :** Ensure accurate intent, coherent transitions, and natural flow

Filters low-quality dialogues and verifies transition plausibility using **3 key criteria**



## Intent Accuracy

- Measures whether each user utterance's annotated intent accurately reflects the user's goal at that moment.
- Detects semantic drift or labeling errors — the intent must align with what the user is actually doing or asking.
- *Does the labeled intent truly capture what the user is trying to achieve in this turn?*



## Transition Quality

- Evaluates how naturally and coherently the dialogue shifts between task-oriented and chitchat modes.
- Assesses logical consistency and context, avoiding artificial or over-assumed intent in mode switching.
- *Is the transition contextually justified and free from forced or premature intent changes?*

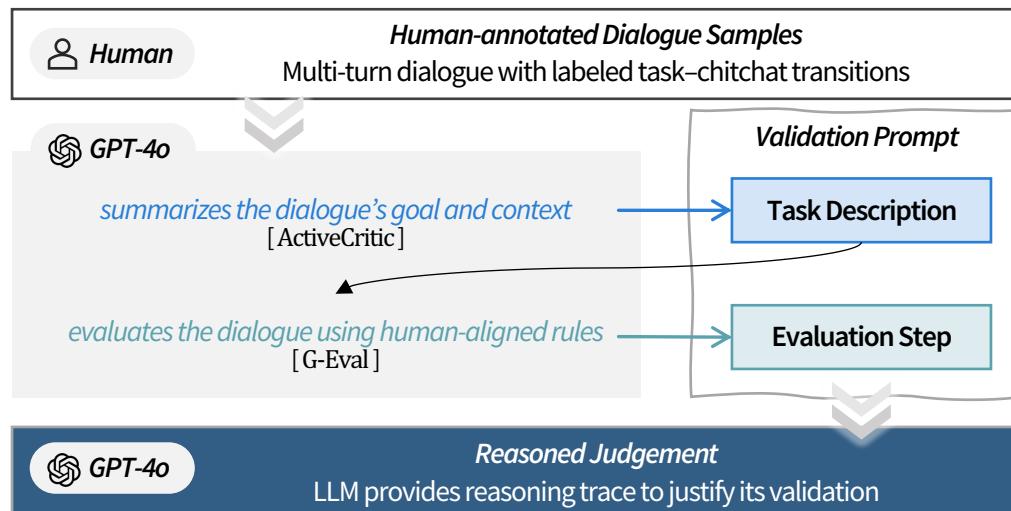


## Dialogue Naturalness

- Captures overall conversational quality — how human-like, coherent, and satisfying the dialogue feels.
- Integrates fluency, recovery, politeness, and user satisfaction as markers of natural interaction.
- *Would this dialogue feel fluent, polite, and engaging to a real user while completing the task effectively?*



Defines human-aligned criteria for reliable dialogue validation


# Data Validation

## How we validate : Human-aligned criteria meet scalable LLM reasoning

Hybrid validation - combines **rule-based consistency checks** with **LLM-based reasoning** (Active Critic + G-Eval)

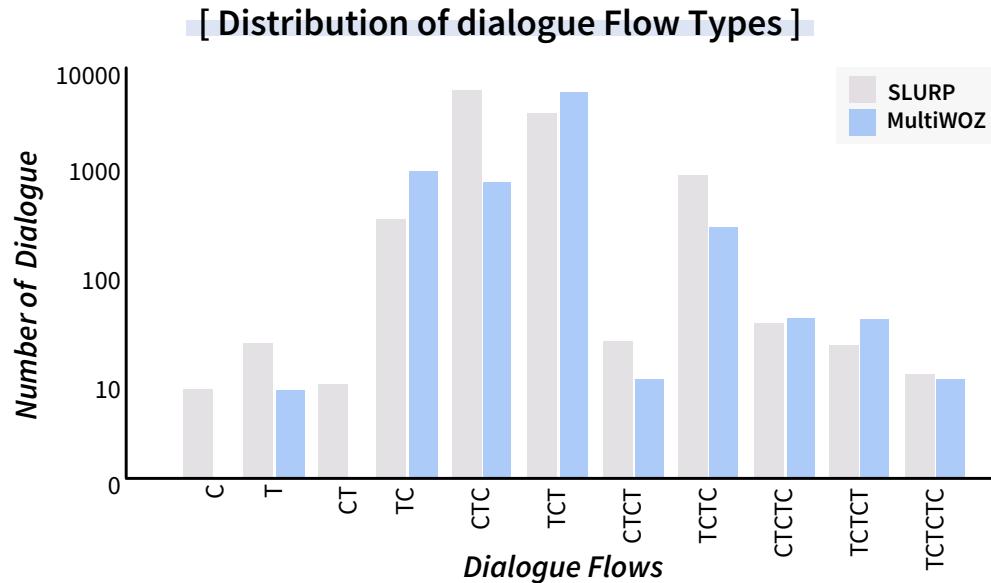
- Interpretable & scalable validation : integrates human criteria with autonomous evaluation steps
- Reasoning flow: dialogue → task description → criteria → reasoned judgement

### TACT Validation Workflow



### Validation Methods Comparison

| Validation Approaches | Human-Annotated Criteria | LLM-Generated Task Description | LLM-Generated Evaluation Steps |
|-----------------------|--------------------------|--------------------------------|--------------------------------|
| Active Critic         | ✗                        | ✓                              | ✗                              |
| G-Eval                | ✓                        | ✗                              | ✓                              |
| Ours                  | ✓                        | ✓                              | ✓                              |


\* **Comparison of validation methods** : only ours integrates both human-aligned criteria and LLM reasoning.

⚙ Establishes a **unified validation pipeline** combining human criteria and LLM reasoning

# TACT Characteristics

## Rich dialogue flows for realistic mode transitions

- Multiple flow types  $TCT$ ,  $CTC$ , etc., allowing agents to experience realistic, recoverable transitions
- Recoverable structures: return to suspended mode
- Balanced initiators: both user- and agent-driven switches



[ Dataset comparison ]

| Dataset                    | Rich dialogue flows for realistic mode transitions |             | TACT      |                             |       |
|----------------------------|----------------------------------------------------|-------------|-----------|-----------------------------|-------|
| Seed                       | SalesBot1.0                                        | MultiWOZ2.4 | FusedChat | MultiWOZ2.2                 | SLURP |
| # Intents                  | 6                                                  | 11          | 11        | 11                          | 50*   |
| # Dialog                   | 5,453                                              | 10,436      | 4,475     | 7,199                       | 9,936 |
| # Avg. Turn                | 7.71                                               | 18.36       | 13.58     | 15.04                       | 16.42 |
| # Avg. Switch              | 0.96                                               | 1           | 0*        | 1.93                        | 2.06  |
| # Avg. Recov.              | -                                                  | 0           | 0*        | 0.93                        | 1.07  |
| # Uniq. Flow<br>Flow Types | 2<br>CT                                            | 2<br>TC, CT | 1<br>T*   | 11<br>TCT, CTC, TCTCT, etc. | 12    |

**TACT** enables robust learning of multi-turn, recoverable transitions

# Methodology

## Modeling approaches for handling ToD - Chitchat transitions

1. **ICL** (GPT-4o) – zero/few-shot prompting for rapid adaptation *without training*
2. **SFT** (FnCTOD) – *supervised fine-tuning baseline* trained on full data (*FusedChat*, *InterfereChat*,  *TACT*)
3. **Pipeline** – *separates* mode control and response generation *modules* for modular evaluation



Comparing modeling paradigms for agents to handle ToD + Chitchat + Transitions

# Evaluation Metrics

## Standard metrics - accuracy for tasks, quality for chitchat

Assesses both **goal completion** and **conversation quality** using standard dialogue evaluation schemes

### ToD metrics

#### \* **Mode Selection (Acc.)**

: Checks whether the model selects the correct dialogue mode (ToD or Chitchat).

#### \* **Intent Detection (Acc.)**

- **Turn-level**: counts a prediction as correct for each turn.
- **Dialogue-level**: counts a dialogue as correct only if all intent predictions within it are correct.

#### \* **Joint Accuracy**

: Counts a turn as correct only when both the dialogue mode and intent predictions are correct.

### Chitchat metrics

#### \* **SSI + Transition Naturalness (Win Rate)**

- Follow the **SSI framework** to measure chat quality.
  - **Sensibleness** – logical consistency of the reply
  - **Specificity** – informativeness and contextual grounding
  - **Interestingness** – engagement and diversity of tone
- Additionally, we introduce **Transition Naturalness**
  - **Transition Naturalness** – smoothness when entering or exiting the mode.

\* Gemini-2.5-Pro and human annotators results are aggregated as win rates.

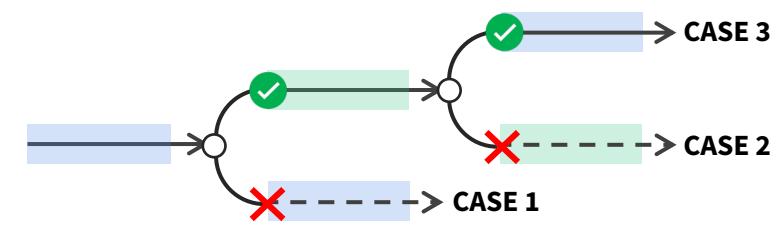


Measures both **what agents do** and **how they talk**

# Evaluation Metrics

## Flow-aware metrics — measuring proactive and recoverable transitions

Evaluates whether the agent can **proactively** move between modes and recover the original mode afterwards


**Switch** – whether the *agent* initiates a mode change (e.g.,  $T \rightarrow C, C \rightarrow T$ )

**Recovery** – whether the *agent* returns to the suspended task (e.g.,  $T \rightarrow C \rightarrow T, C \rightarrow T \rightarrow C$ )

In dialogue-level, **Switch** and **Recovery** are measured by:

- **Attempt** : average number of transition trials per dialogue
  - *Switch* Attempt : count of initiated transitions (○)
  - *Recovery* Attempt : number of *Switch* Attempt - 1
  -
- **Success** : proportion of user-accepted transitions among attempts
  - *Switch* Success : count of successful transitions (✓)
  - *Recovery* Success : number of *Switch* Success - 1

[ Visualization of *Switch* & *Recovery* ]



|                | TOD     | Chitchat | ○ Transition Attempt | ✓ Success | ✗ Fail |
|----------------|---------|----------|----------------------|-----------|--------|
| CASE 1   2   3 | Attempt |          |                      | Success   |        |
| Switch         | +1      | +2       | +2                   | X         | +1     |
| Recover        | -       | +1       | +1                   | -         | X      |
|                |         |          |                      |           | +1     |



“Can the *agent* switch and come back naturally?”

# Evaluation

## Quantitative Evaluation - Across Datasets

### ToD Performance

- Exposure to transition-rich dialogue improves task robustness and generalization.
- The  **TACT**-trained model achieves strong ToD performance and the **best** cross-dataset generalization, indicating that transition-rich supervision also strengthens task-level understanding.

| Training Set                                                                                                 | Test Set                 | TOD            |              |                  |               |                |               | Flow    |          |         |         |
|--------------------------------------------------------------------------------------------------------------|--------------------------|----------------|--------------|------------------|---------------|----------------|---------------|---------|----------|---------|---------|
|                                                                                                              |                          | Mode Selection |              | Intent Detection |               | Joint Accuracy |               | Switch  | Recovery | Attempt | Success |
|                                                                                                              |                          | Acc.           | F1           | Acc./turn        | Acc./dialogue | Acc./turn      | Acc./dialogue | Attempt | Success  | Attempt | Success |
| FusedChat                                                                                                    | MultiWOZ                 | 98.44          | 76.71        | 93.79            | 69.80         | 93.57          | 68.90         | 0.000   | 0.000    | -       | -       |
|                                                                                                              | FusedChat                | 97.00          | 96.70        | 92.85            | 66.90         | 94.20          | 60.50         | 0.000   | 0.000    | -       | -       |
|                                                                                                              | InterfereChat            | 97.04          | 94.68        | 93.21            | 67.62         | 93.09          | 61.89         | 0.000   | 0.000    | -       | -       |
|                                                                                                              | TACT <sub>MultiWOZ</sub> | 91.79          | 87.27        | 94.46            | 72.65         | 88.13          | 33.24         | 0.000   | 0.000    | -       | -       |
|                                                                                                              | <b>Average</b>           | <b>96.07</b>   | <b>88.84</b> | <b>93.58</b>     | <b>69.24</b>  | <b>92.25</b>   | <b>56.13</b>  |         |          |         |         |
| InterfereChat                                                                                                | MultiWOZ                 | 98.27          | 75.97        | 93.92            | 70.90         | 93.74          | 70.10         | 0.000   | 0.000    | -       | -       |
|                                                                                                              | FusedChat                | 79.92          | 73.43        | 92.85            | 67.10         | 76.19          | 7.10          | 0.000   | 0.000    | -       | -       |
|                                                                                                              | InterfereChat            | 97.63          | 95.72        | 93.28            | 68.44         | 93.34          | 64.34         | 0.000   | 0.000    | -       | -       |
|                                                                                                              | TACT <sub>MultiWOZ</sub> | 79.26          | 58.41        | 93.95            | 71.34         | 84.33          | 34.89         | 0.000   | 0.000    | -       | -       |
|                                                                                                              | <b>Average</b>           | <b>88.77</b>   | <b>75.88</b> | <b>93.84</b>     | <b>70.62</b>  | <b>84.82</b>   | <b>35.39</b>  |         |          |         |         |
|  TACT <sub>MultiWOZ</sub> | MultiWOZ                 | 98.06          | 74.91        | 92.70            | 66.20         | 92.57          | 65.50         | 0.000   | 0.000    | 1.000   | < 0.001 |
|                                                                                                              | FusedChat                | 90.63          | 89.05        | 92.57            | 65.70         | 87.08          | 34.10         | 0.160   | 0.008    | 1.000   | < 0.001 |
|                                                                                                              | InterfereChat            | 97.32          | 95.20        | 92.13            | 64.14         | 92.38          | 59.22         | 0.619   | 0.309    | 0.013   | 0.104   |
|                                                                                                              | TACT <sub>MultiWOZ</sub> | 98.95          | 98.50        | 96.35            | 80.94         | 96.41          | 75.59         | 1.322   | 1.300    | 0.977   | 0.856   |
|                                                                                                              | <b>Average</b>           | <b>96.24</b>   | <b>89.42</b> | <b>93.44</b>     | <b>69.25</b>  | <b>92.11</b>   | <b>58.60</b>  |         |          |         |         |

# Evaluation

## Quantitative Evaluation - Across Datasets

### Flow Performance

- Only the  **TACT**-trained model records non-zero **Switch** and **Recovery** scores, showing that it can proactively transition and resume tasks across dialogue modes.
- Other models trained on single-mode datasets (*FusedChat*, *InterfereChat*) **show no** recoverable flow behavior.

| Training Set                                                                                                 | Test Set                 | TOD                    |              |                               |                                   |                             |                                 | Flow              |                   |                     |                     |
|--------------------------------------------------------------------------------------------------------------|--------------------------|------------------------|--------------|-------------------------------|-----------------------------------|-----------------------------|---------------------------------|-------------------|-------------------|---------------------|---------------------|
|                                                                                                              |                          | Mode Selection<br>Acc. | F1           | Intent Detection<br>Acc./turn | Intent Detection<br>Acc./dialogue | Joint Accuracy<br>Acc./turn | Joint Accuracy<br>Acc./dialogue | Switch<br>Attempt | Switch<br>Success | Recovery<br>Attempt | Recovery<br>Success |
| FusedChat                                                                                                    | MultiWOZ                 | 98.44                  | 76.71        | 93.79                         | 69.80                             | 93.57                       | 68.90                           | 0.000             | 0.000             | -                   | -                   |
|                                                                                                              | FusedChat                | 97.00                  | 96.70        | 92.85                         | 66.90                             | 94.20                       | 60.50                           | 0.000             | 0.000             | -                   | -                   |
|                                                                                                              | InterfereChat            | 97.04                  | 94.68        | 93.21                         | 67.62                             | 93.09                       | 61.89                           | 0.000             | 0.000             | -                   | -                   |
|                                                                                                              | TACT <sub>MultiWOZ</sub> | 91.79                  | 87.27        | 94.46                         | 72.65                             | 88.13                       | 33.24                           | 0.000             | 0.000             | -                   | -                   |
|                                                                                                              | <b>Average</b>           | 96.07                  | 88.84        | 93.58                         | 69.24                             | <b>92.25</b>                | 56.13                           |                   |                   |                     |                     |
| InterfereChat                                                                                                | MultiWOZ                 | 98.27                  | 75.97        | 93.92                         | 70.90                             | 93.74                       | 70.10                           | 0.000             | 0.000             | -                   | -                   |
|                                                                                                              | FusedChat                | 79.92                  | 73.43        | 92.85                         | 67.10                             | 76.19                       | 7.10                            | 0.000             | 0.000             | -                   | -                   |
|                                                                                                              | InterfereChat            | 97.63                  | 95.72        | 93.28                         | 68.44                             | 93.34                       | 64.34                           | 0.000             | 0.000             | -                   | -                   |
|                                                                                                              | TACT <sub>MultiWOZ</sub> | 79.26                  | 58.41        | 93.95                         | 71.34                             | 84.33                       | 34.89                           | 0.000             | 0.000             | -                   | -                   |
|                                                                                                              | <b>Average</b>           | 88.77                  | 75.88        | <b>93.84</b>                  | <b>70.62</b>                      | 84.82                       | 35.39                           |                   |                   |                     |                     |
|  TACT <sub>MultiWOZ</sub> | MultiWOZ                 | 98.06                  | 74.91        | 92.70                         | 66.20                             | 92.57                       | 65.50                           | 0.000             | 0.000             | 1.000               | < 0.001             |
|                                                                                                              | FusedChat                | 90.63                  | 89.05        | 92.57                         | 65.70                             | 87.08                       | 34.10                           | 0.160             | 0.008             | 1.000               | < 0.001             |
|                                                                                                              | InterfereChat            | 97.32                  | 95.20        | 92.13                         | 64.14                             | 92.38                       | 59.22                           | 0.619             | 0.309             | 0.013               | 0.104               |
|                                                                                                              | TACT <sub>MultiWOZ</sub> | 98.95                  | 98.50        | 96.35                         | 80.94                             | 96.41                       | 75.59                           | 1.322             | 1.300             | 0.977               | 0.856               |
|                                                                                                              | <b>Average</b>           | <b>96.24</b>           | <b>89.42</b> | 93.44                         | 69.25                             | 92.11                       | <b>58.60</b>                    |                   |                   |                     |                     |

# Evaluation

## Quantitative evaluation - across MultiWOZ-derived datasets

When evaluated on different transition formulations (*MultiWOZ*, *FusedChat*, *InterfereChat*),

➡ **TACT** - trained model exhibits **robust performance and transition-awareness**.

| Training Set  | Test Set                 | TOD            |              |                  |               |                |               | Flow    |         |          |         |
|---------------|--------------------------|----------------|--------------|------------------|---------------|----------------|---------------|---------|---------|----------|---------|
|               |                          | Mode Selection |              | Intent Detection |               | Joint Accuracy |               | Switch  | Success | Recovery | Attempt |
|               |                          | Acc.           | F1           | Acc./turn        | Acc./dialogue | Acc./turn      | Acc./dialogue | Attempt | Success | Attempt  | Success |
| FusedChat     | MultiWOZ                 | 98.44          | 76.71        | 93.79            | 69.80         | 93.57          | 68.90         | 0.000   | 0.000   | -        | -       |
|               | FusedChat                | 97.00          | 96.70        | 92.85            | 66.90         | 94.20          | 60.50         | 0.000   | 0.000   | -        | -       |
|               | InterfereChat            | 97.04          | 94.68        | 93.21            | 67.62         | 93.09          | 61.89         | 0.000   | 0.000   | -        | -       |
|               | TACT <sub>MultiWOZ</sub> | 91.79          | 87.27        | 94.46            | 72.65         | 88.13          | 33.24         | 0.000   | 0.000   | -        | -       |
|               | <b>Average</b>           | 96.07          | 88.84        | 93.58            | 69.24         | <b>92.25</b>   | 56.13         |         |         |          |         |
| InterfereChat | MultiWOZ                 | 98.27          | 75.97        | 93.92            | 70.90         | 93.74          | 70.10         | 0.000   | 0.000   | -        | -       |
|               | FusedChat                | 79.92          | 73.43        | 92.85            | 67.10         | 76.19          | 7.10          | 0.000   | 0.000   | -        | -       |
|               | InterfereChat            | 97.63          | 95.72        | 93.28            | 68.44         | 93.34          | 64.34         | 0.000   | 0.000   | -        | -       |
|               | TACT <sub>MultiWOZ</sub> | 79.26          | 58.41        | 93.95            | 71.34         | 84.33          | 34.89         | 0.000   | 0.000   | -        | -       |
|               | <b>Average</b>           | 88.77          | 75.88        | <b>93.84</b>     | <b>70.62</b>  | 84.82          | 35.39         |         |         |          |         |
|               | MultiWOZ                 | 98.06          | 74.91        | 92.70            | 66.20         | 92.57          | 65.50         | 0.000   | 0.000   | 1.000    | < 0.001 |
|               | FusedChat                | 90.63          | 89.05        | 92.57            | 65.70         | 87.08          | 34.10         | 0.160   | 0.008   | 1.000    | < 0.001 |
|               | InterfereChat            | 97.32          | 95.20        | 92.13            | 64.14         | 92.38          | 59.22         | 0.619   | 0.309   | 0.013    | 0.104   |
|               | TACT <sub>MultiWOZ</sub> | 98.95          | 98.50        | 96.35            | 80.94         | 96.41          | 75.59         | 1.322   | 1.300   | 0.977    | 0.856   |
|               | <b>Average</b>           | <b>96.24</b>   | <b>89.42</b> | 93.44            | 69.25         | 92.11          | <b>58.60</b>  |         |         |          |         |

Transition-aware training  
→ consistent performance  
across related datasets

➡ **TACT<sub>MultiWOZ</sub>**

➡ **TACT** is the **only** dataset enabling proactive, transition-aware, and recoverable dialogues

# Evaluation

## Quantitative evaluation - across modeling methods

Performance and behavior differences across baseline modeling strategies: **ICL, SFT, Pipeline**

| Method   | TOD            |              |                  |               | Flow           |               |              |         | Chitchat     |         |          |
|----------|----------------|--------------|------------------|---------------|----------------|---------------|--------------|---------|--------------|---------|----------|
|          | Mode Selection |              | Intent Detection |               | Joint Accuracy |               | Switch       |         | Recovery     | Overall |          |
|          | Acc.           | F1-score     | Acc./turn        | Acc./dialogue | Acc./turn      | Acc./dialogue | Attempt      | Success | Attempt      | Success | Win-Rate |
| ICL-ZS   | 90.46          | 86.21        | 87.57            | 50.44         | 85.01          | 30.00         | 0.879        | 0.374   | 0.880        | 0.099   | -        |
| ICL-FS   | 91.45          | 88.98        | 84.09            | 40.00         | 86.89          | 36.76         | <b>1.577</b> | 0.865   | <b>1.571</b> | 0.652   | -        |
| SFT      | <b>98.95</b>   | <b>98.50</b> | <b>96.35</b>     | <b>80.94</b>  | <b>96.41</b>   | 75.59         | 1.322        | 1.300   | 0.977        | 0.856   | 23.16    |
| Pipeline | <b>98.95</b>   | <b>98.50</b> | <b>96.35</b>     | <b>80.94</b>  | <b>96.41</b>   | 75.59         | 1.322        | 1.300   | 0.977        | 0.856   | 24.32    |

1. **ICL** (Few-shot) → frequent but unstable transitions (low control, high variance)
2. **SFT** → highest ToD accuracy but weak chitchat engagement
3. **Pipeline** → stable but rigid; lacks flexibility across dialogue modes



“How to improve the naturalness of chat responses?”

# Methodology

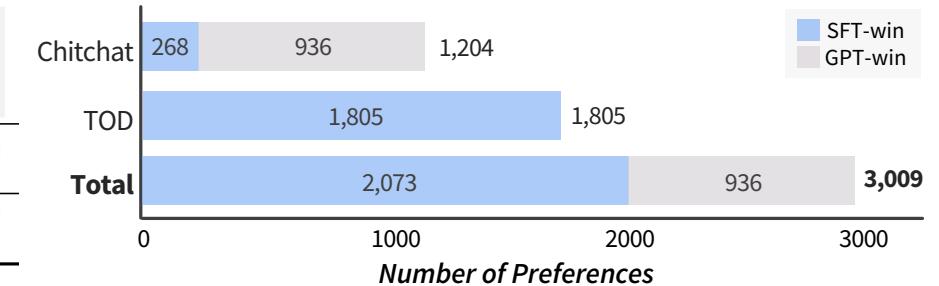
## Modeling approaches for handling ToD - Chitchat transitions

1. **ICL (GPT-4o)** – zero/few-shot prompting for rapid adaptation *without training*
2. **SFT (FnCTOD)** – *supervised fine-tuning baseline* trained on full data (*FusedChat*, *InterfereChat*,  *TACT*)
3. **Pipeline** – separates mode control and response generation *modules* for modular evaluation
4. **DPO** – *aligns model with human preferences* for natural tone and coherent mode recovery

### **Preference Pair Construction** ; Chosen / Rejected response pairs

3,009 pairs (SFT vs. GPT-4O-mini, judged by Gemini-2.5-Pro)

#### [ Preference pair sample ]


##### [ Dialogue History ]

**User:** I'm looking for a hotel to stay in that's expensive and on the east side.  
**Agent:** Express by Holiday Inn Cambridge is on the east side and expensive.  
**User:** That sounds good, but can you tell me if it includes free Wi-Fi?

**Chosen Response**    **Agent:** <function\_call>{"function" : "find\_hotel"}</function\_call> Yes, it does include free Wi-Fi. Would you like me to book a room for you?

**Rejected Response**    **Agent:** <function\_call>{"function" : "find\_hotel"}</function\_call> Yes, Express by Holiday Inn Cambridge includes free Wi-Fi.

#### [ Preference Distribution ]



Comparing modeling paradigms for agents to handle ToD + Chitchat + Transitions

# Evaluation

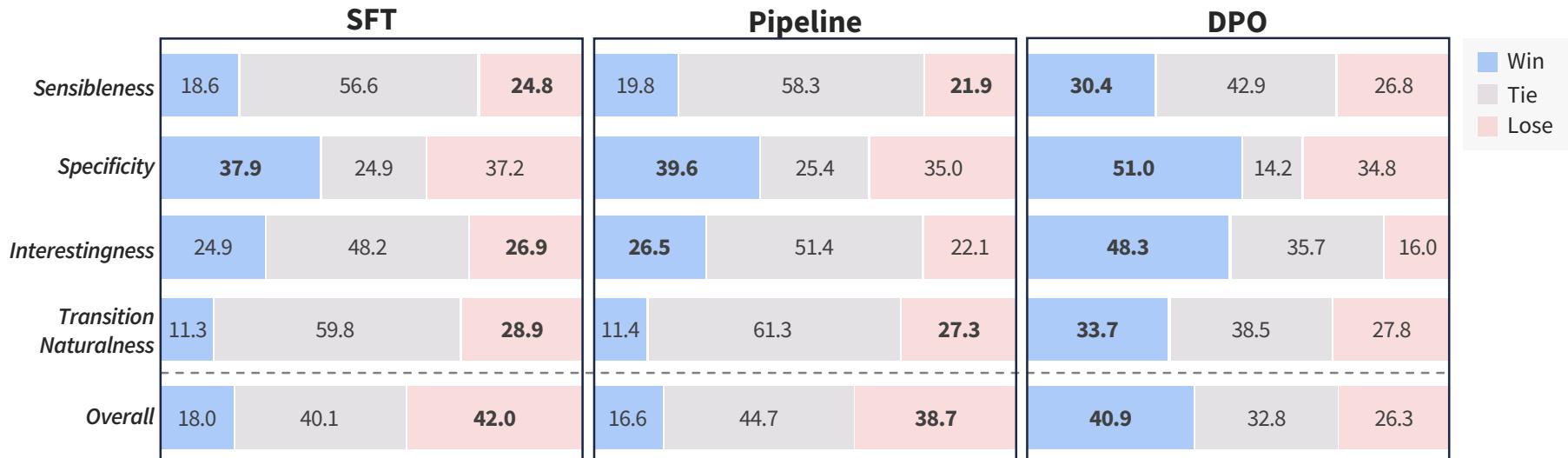
## Quantitative evaluation - with DPO preference alignment

Compares task, flow, and chitchat performance before and after **preference alignment**

| Method   | TOD            |              |                  |               | Flow           |               |              |              | Chitchat     |              |              |
|----------|----------------|--------------|------------------|---------------|----------------|---------------|--------------|--------------|--------------|--------------|--------------|
|          | Mode Selection |              | Intent Detection |               | Joint Accuracy |               | Switch       |              | Recovery     | Overall      |              |
|          | Acc.           | F1-score     | Acc./turn        | Acc./dialogue | Acc./turn      | Acc./dialogue | Attempt      | Success      | Attempt      | Success      | Win-Rate     |
| ICL-ZS   | 90.46          | 86.21        | 87.57            | 50.44         | 85.01          | 30.00         | 0.879        | 0.374        | 0.880        | 0.099        | -            |
| ICL-FS   | 91.45          | 88.98        | 84.09            | 40.00         | 86.89          | 36.76         | <b>1.577</b> | 0.865        | <b>1.571</b> | 0.652        | -            |
| SFT      | <b>98.95</b>   | <b>98.50</b> | <b>96.35</b>     | <b>80.94</b>  | <b>96.41</b>   | 75.59         | 1.322        | 1.300        | 0.977        | 0.856        | 23.16        |
| SFT-DPO  | 98.82          | 98.32        | 96.03            | 80.00         | 96.21          | <b>75.74</b>  | 1.343        | <b>1.322</b> | 0.977        | <b>0.859</b> | <b>40.86</b> |
| Pipeline | <b>98.95</b>   | <b>98.50</b> | <b>96.35</b>     | <b>80.94</b>  | <b>96.41</b>   | 75.59         | 1.322        | 1.300        | 0.977        | 0.856        | 24.32        |

4. DPO

- Maintains ToD accuracy (~96%) while improving response quality
- +17pp improvement in chitchat win rate (40.9%)
- Strongest flow-awareness: highest switch & recovery success (>1 per dialogue)


👍 DPO achieves **best** dialogue-level accuracy (75.7%) with **strongest** flow-awareness metrics.

# Evaluation

## Preference-Based Evaluation - automated LLM judge results

### Chat Performance

- Evaluated with an LLM-based judge (Gemini-2.5-Pro) over the full test set.
- **DPO** consistently outperforms **SFT** and **Pipeline** across all qualitative dimensions.
- Gains +20 pp in Interestingness and +22 pp in Transition Naturalness, indicating that alignment training improves conversation flow and engagement.



Even an LLM can tell — DPO makes dialogue flow naturally.

# Evaluation

## Preference-Based Evaluation - validating conversational naturalness beyond automated LLM

Human evaluation setup—assessing dialogue quality with human annotators

### [ Human Evaluation Setup ]

- Conducted to evaluate the overall quality and naturalness of dialogues, including mode transitions.
- Evaluated 77 randomly sampled dialogues by 10 \*human annotators.
  - \* including both NLP practitioners and general users
- Used the same 4 qualitative criteria as LLM-based evaluation (**SSI + Transition Naturalness**).
- Results are aggregated as pairwise win rates for each dimension.

### [ Annotation Guide ]

#### TACT Human Evaluation Guide

This experiment aims to compare and evaluate the response quality of dialogue generation models. In particular, we focus on how naturally the model can transition between task-oriented dialogues and chitchat.

Task-oriented dialogue refers to interactions with clear goals, such as "Recommend me a restaurant" or "Tell me the train schedule".

Chitchat refers to casual conversations not directly related to a task, such as "Isn't the weather nice today?" or "What movies are fun lately?"

A transition means moving between these types of dialogue in a way that feels natural and coherent.

For example, following a task query with "Do you like train trips yourself?", or after receiving a restaurant suggestion, responding with "Maybe I'll try cooking it myself."

A transition is not required and there is no correct answer. However, please keep in mind that natural transitions may occur in many situations and try to explore rich dialogue flows.

- Model EXP1
- Model EXP2

#### 1. Experiment Procedure

1. After accessing the model page, select one of the scenarios assigned to you to begin the experiment. (Up to 10 scenarios are assigned, and the assignment list will be provided separately.)

2. Check the **Guideline** at the top. It provides a brief overview of the entire scenario flow, summarizing how many turns of dialogue occurred and what intent transitions took place in a skeleton form. You do not have to strictly follow it; feel free to refer to it as a guide.

3. To experiment with various dialogue types, please try not only simple information requests or commands but also chitchat. For example: expressing emotions, questions unrelated to the current request, other personal questions, daily conversations, etc.

4. Read the displayed past conversation records (samples) to understand the context.

5. From after the Assistant's last utterance, you will continue the conversation yourself.

6. Input freely as if you were a real user, evaluate the model's responses, and continue the conversation.

7. When you feel the conversation has progressed sufficiently, press the **Save** button to save the record.

8. After exchanging at least 6 turns — that is, after you have input more than 6 times excluding sample dialogues —

### [ Evaluation Interface ]

#### TACT Chat Evaluation

The screenshot shows a web-based interface for evaluating dialogue. At the top, there is a dropdown menu set to 'PMUL0130.json' with a 'Load' button and a note 'Current data source: TACT-multiwoz.json - PMUL0130.json'. Below this is a 'Show Guidelines' button. The main area is a chat window with two messages. The first message is from the 'USER' asking if there are any moderately priced Catalan restaurants. The second message is from the 'ASSISTANT' stating that no such restaurants were found. The user then asks if there is another type of cuisine. The assistant responds with more options. The user then asks if there is a particular area they prefer. The assistant suggests The Oak Bistro. At the bottom of the interface are buttons for 'Your message', 'Clear Chat History', 'Save Dialogue History', and 'Send'.



Complementing automated LLM judging with human preference validation

# Evaluation

## Preference-Based Evaluation - human preference confirms DPO's conversational naturalness

### Chat Performance

- *Human Evaluation* : Humans perceive DPO as most natural and engaging
- *Overall* : DPO wins over 70 % of pairwise comparisons across 77 dialogues



### [ Response Comparison Example ]

#### [ Dialogue History ]

User: Can you help me find a train? I'll be traveling on Wednesday.  
 Agent: What is your departure point and what time would you like to depart?  
 User: Oh, of course. Sorry. I'm leaving out of Leicester and going into Cambridge.  
 Agent: Is there a specific time you want to leave or arrive by? I have 2,828 trains to pick from. I need to narrow this down.  
 User: I want to arrive by 16:15.  
 Agent: That narrowed it down to 10 options. What time would you like to leave?  
 User: I don't have a preference on leaving time. By the way, I really enjoy train journeys. There's something so relaxing about watching the scenery go by. Do you have a favorite route?  
 Agent: Oh, I completely agree! Train journeys can be quite scenic. The route from Leicester to Cambridge has some lovely views, especially as you approach the countryside.  
 User: That sounds nice! I love seeing fields and little villages. It makes the trip feel more like an adventure.

**SFT Response** Agent: How about TR8076? It leaves at 05:09.  
 (Ignores the chitchat and returns directly to task.)

**SFT-DPO Response** Agent: Absolutely! It adds a nice touch to the journey. Now, back to your train options.  
 I would recommend TR 7853. It leaves at 13:09 and arrives at 14:54.  
 (Most natural transition—acknowledges the chitchat and resumes the task smoothly.)

**ICL-FS Response** Agent: Absolutely, the countryside views are charming! Now, let's finalize your train booking.  
 Would you like me to proceed with one of the options that arrive by 16:15?  
 (Acknowledges the chitchat but lacks concrete task grounding.)



Human evaluators favor DPO for its fluent, engaging, and context-sensitive transitions.

# Ablation

## Ablation Study — understanding how agents recover and adapt across dialogue flows

**Recovery Success Analysis** suggests contextual flexibility rather than repetition

- Only ~34 % of recoveries return to the **same intent**
- 66 % start a **new but relevant** task

| Method  | Success | intent ✓ | intent ✗ |
|---------|---------|----------|----------|
| ICL-FS  | 0.652   | 33.89    | 66.11    |
| SFT     | 0.856   | 34.58    | 65.42    |
| SFT-DPO | 0.859   | 34.23    | 65.77    |

### Flow Type Comparison

reveals flow-dependent robustness

- Strongest on TCT flows
- Weak on CTC
  - \* less agent-initiated data
- Over-triggering in TC flows  
→ mode confusion

| Flow type<br>(# Dialogues)     | TOD            |       |                  |               |                |               | Flow    |         |          |         |
|--------------------------------|----------------|-------|------------------|---------------|----------------|---------------|---------|---------|----------|---------|
|                                | Mode Selection |       | Intent Detection |               | Joint Accuracy |               | Switch  |         | Recovery |         |
|                                | Acc.           | F1    | Acc./turn        | Acc./dialogue | Acc./turn      | Acc./dialogue | Attempt | Success | Attempt  | Success |
| TACT <sub>MutliWOZ</sub> (680) |                |       |                  |               |                |               |         |         |          |         |
| TCT (533)                      | 99.35          | 99.04 | 96.64            | 82.18         | 97.18          | 81.24         | 1.390   | 1.372   | 1.006    | 0.977   |
| CTC (38)                       | 97.06          | 96.51 | 96.30            | 92.11         | 97.06          | 81.58         | 0.421   | 0.342   | 0.313    | 0.000   |
| TC (74)                        | 95.35          | 97.99 | 95.35            | 74.32         | 95.18          | 64.86         | 1.419   | 1.378   | 1.000    | 0.069   |
| TCTC (27)                      | 97.35          | 96.94 | 97.39            | 85.19         | 96.46          | 70.37         | 1.222   | 1.185   | 0.958    | 0.958   |
| Others (7)                     | 98.36          | 98.29 | 97.22            | 87.50         | 96.72          | 75.00         | 0.500   | 0.500   | 1.000    | 1.000   |
| TACT <sub>SLURP</sub> (1,790)  |                |       |                  |               |                |               |         |         |          |         |
| TCT (618)                      | 99.41          | 99.12 | 94.18            | 72.98         | 95.28          | 72.01         | 0.974   | 0.964   | 1.019    | 0.985   |
| CTC (907)                      | 97.61          | 97.00 | 91.69            | 88.20         | 96.10          | 79.82         | 1.756   | 0.821   | 1.041    | 0.037   |
| TC (60)                        | 91.19          | 91.01 | 76.68            | 31.67         | 85.32          | 30.00         | 1.450   | 0.550   | 1.304    | 0.071   |
| TCTC (174)                     | 96.06          | 96.03 | 91.17            | 71.26         | 92.80          | 60.34         | 1.793   | 1.167   | 1.616    | 0.169   |
| Others (31)                    | 85.13          | 84.87 | 82.28            | 45.16         | 84.39          | 16.13         | 1.645   | 0.677   | 1.393    | 0.107   |



Recovery ≠ repetition → contextual flexibility matters  
Need balanced supervision for ambiguous transitions



# Conclusion

1

## Transition-Aware Dataset

- **TACT** enables recoverable, multi-turn dialogues
- Unifies ToD and Chitchat into a single transition-aware framework

2

## Flow-Aware Metrics

- Introduce Switch and Recovery to measure mode adaptability

3

## Preference-Aligned Model

- **DPO** improves conversational smoothness and engagement
- Achieves more natural and context-aware transitions

4

## Reproducibility & Open Source

- All datasets (with scripts) and validation templates available on GitHub
- <https://github.com/HYU-NLP/TACT>

# Thank You

Yejin Yoon

HYU NLP Lab.  
Dept. of Computer Science  
Hanyang University, South Korea  
[stillwithyou@hanyang.ac.kr](mailto:stillwithyou@hanyang.ac.kr)

